tumor%20cells%20in%20space20130626075704

Cancer researchers looking for a breakthrough might want to relocate to the International Space Station. Biologists have found that microgravity research and other space-based experiments provide greater insight into abnormal cell behavior.

In Earth-bound labs, cells grow flat, unable to fully mimic the three-dimensional architecture shaped by proteins and carbohydrates of a working human organ. This gap provides an obstacle for scientists studying changes in cell growth and development.

In space, cells clump together easily, arranging themselves into three-dimensional groupings that better replicate cell activity. They also experience less fluid shear stress, a type of disturbance that affects their behavior outside of the body.

Many of the cells in space will likely die due to a lack of blood vessels providing necessary oxygen and nutrients. That might seem like a disadvantage, but it actually resembles the condition of tumors with areas of dead tissue at their centers, biologists say.

While the unique physical conditions of space have proven apt, research on Earth is also making headway with the construction of 3-D cell structures using a collagen gel matrix. Combined with microgravity studies, such research advances could greatly help biologists understand the cellular changes that lead to cancer and develop ways to prevent them.